10 research outputs found

    Fast and Efficient Model for Real-Time Tiger Detection In The Wild

    Full text link
    The highest accuracy object detectors to date are based either on a two-stage approach such as Fast R-CNN or one-stage detectors such as Retina-Net or SSD with deep and complex backbones. In this paper we present TigerNet - simple yet efficient FPN based network architecture for Amur Tiger Detection in the wild. The model has 600k parameters, requires 0.071 GFLOPs per image and can run on the edge devices (smart cameras) in near real time. In addition, we introduce a two-stage semi-supervised learning via pseudo-labelling learning approach to distill the knowledge from the larger networks. For ATRW-ICCV 2019 tiger detection sub-challenge, based on public leaderboard score, our approach shows superior performance in comparison to other methods

    DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks

    Full text link
    We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss . DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem -- object detection on (de-)blurred images. The method is 5 times faster than the closest competitor -- DeepDeblur. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. The model, code and the dataset are available at https://github.com/KupynOrest/DeblurGANComment: CVPR 2018 camera-read

    FEAR: Fast, Efficient, Accurate and Robust Visual Tracker

    Full text link
    We present FEAR, a family of fast, efficient, accurate, and robust Siamese visual trackers. We present a novel and efficient way to benefit from dual-template representation for object model adaption, which incorporates temporal information with only a single learnable parameter. We further improve the tracker architecture with a pixel-wise fusion block. By plugging-in sophisticated backbones with the abovementioned modules, FEAR-M and FEAR-L trackers surpass most Siamese trackers on several academic benchmarks in both accuracy and efficiency. Employed with the lightweight backbone, the optimized version FEAR-XS offers more than 10 times faster tracking than current Siamese trackers while maintaining near state-of-the-art results. FEAR-XS tracker is 2.4x smaller and 4.3x faster than LightTrack with superior accuracy. In addition, we expand the definition of the model efficiency by introducing FEAR benchmark that assesses energy consumption and execution speed. We show that energy consumption is a limiting factor for trackers on mobile devices. Source code, pretrained models, and evaluation protocol are available at https://github.com/PinataFarms/FEARTracker

    DAD-3DHeads: A Large-scale Dense, Accurate and Diverse Dataset for 3D Head Alignment from a Single Image

    Get PDF
    We present DAD-3DHeads, a dense and diverse large-scale dataset, and a robust model for 3D Dense Head Alignment in the wild. It contains annotations of over 3.5K landmarks that accurately represent 3D head shape compared to the ground-truth scans. The data-driven model, DAD-3DNet, trained on our dataset, learns shape, expression, and pose parameters, and performs 3D reconstruction of a FLAME mesh. The model also incorporates a landmark prediction branch to take advantage of rich supervision and co-training of multiple related tasks. Experimentally, DAD-3DNet outperforms or is comparable to the state-of-the-art models in (i) 3D Head Pose Estimation on AFLW2000-3D and BIWI, (ii) 3D Face Shape Reconstruction on NoW and Feng, and (iii) 3D Dense Head Alignment and 3D Landmarks Estimation on DAD-3DHeads dataset. Finally, the diversity of DAD-3DHeads in camera angles, facial expressions, and occlusions enables a benchmark to study in-the-wild generalization and robustness to distribution shifts. The dataset webpage is https://p.farm/research/dad-3dheads

    Conditional Adversarial Networks for Blind Image Deblurring

    No full text
    We present an end-to-end learning approach for motion deblurring, which is based on conditional GAN and content loss – DeblurGAN. DeblurGAN achieves state-of-the art in structural similarity measure and by visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem – object detection on (de-)blurred images. The method is 5 times faster than the closest competitor. Second, we present a novel method of generating synthetic motion blurred images from the sharp ones, which allows realistic dataset augmentation
    corecore